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Abstract

The steady-state free convection inside a cavity made of two horizontal straight walls and two vertical bent-wavy

walls and filled with a fluid-saturated porous medium is numerically investigated in the present paper. The wavy walls

are assumed to follow a profile of cosine curve. The horizontal walls are kept adiabatic, while the bent-wavy walls are

isothermal but kept at different temperatures. The Darcy and energy equations (in non-dimensional stream function

and temperature formulation) are solved numerically using the Galerkin Finite Element Method (FEM). Flow and heat

transfer characteristics (isothermal, streamlines and local and average Nusselt numbers) are investigated for some val-

ues of the Rayleigh number, cavity aspect ratio and surface waviness parameter. The present results are compared with

those reported in the open literature for a square cavity with straight walls. It was found that these results are in excel-

lent agreement.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Convective heat transfer in porous media has at-

tracted the attention of engineers and scientists from

many varying disciplines such as, chemical, civil, envi-

ronmental, mechanical, aerospace, nuclear engineering,

applied mathematicians, geothermal physics, food sci-

ence, etc. To a large extent, this interest is stimulated

by the fact that thermally driven flows in porous media

are of considerable practical applications in the mod-

ern industry. It has given insight in the understanding

dynamics of terrestrial heat flow through aquifer, hot

fluid and ignition front displacements in reservoir engi-
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neering, heat exchange between soil and atmosphere,

flow of moisture through porous industrial materials,

heat exchangers with fluidized beds, fibre and granular

insulation materials, packed-bed chemical reactors, oil

recovery, ceramic processing and catalytic reactors, to

name just a few applications. The fundamental impor-

tance of convective flow in porous media has been ascer-

tained in the recent books by Ingham and Pop [1], Nield

and Bejan [2], Vafai [3], Pop and Ingham [4], Bejan and

Kraus [5], Ingham et al. [6] and Bejan et al. [7] appeared

periodically in the literature.

The prediction of heat transfer from irregular sur-

faces is a topic of fundamental importance for some heat

transfer devices, such as, flat plate solar collectors, flat

plate condensers in refrigerators, double-wall thermal

insulation, underground cable systems, electric machin-

ery, cooling system of micro-electronic devices, natural
ed.
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Nomenclature

a amplitude of the wave

A aspect ratio

g gravitational acceleration, m s�2

K permeability of the porous medium, m2

k thermal conductivity, W m�1 K�1

L cavity height, m

Nu local Nusselt number

Nua average Nusselt number

Ra Rayleigh number for porous medium

S the length of the bent-wall, m

t dimensionless time
�t time, s

T fluid temperature, K

Tc temperature of the cold bent-wall (left), K

Th temperature of the hot bent-wall (right), K

T0 characteristic temperature of the fluid-satu-

rated porous medium, K

u, v dimensionless velocity components along x-

and y-axes, respectively

�u;�v velocity components along x- and y-axes,

respectively, ms�1

W average width of the cavity, m

x, y dimensionless Cartesian coordinates

�x; �y Cartesian coordinates, m

Greek symbols

am effective thermal diffusivity, m2 s�1

b coefficient of thermal expansion, K�1

e the prescribed error

h dimensionless temperature

k surface waviness

q fluid density, kg m�3

r ratio of composite material heat capacity to

convective fluid heat capacity

m kinematic viscosity, m2s�1

w dimensionless stream function
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circulation in the atmosphere, the molten core of the

Earth, etc. In addition, roughened surfaces could be

used in the cooling of electrical and nuclear components

where the wall heat flux is known. Surfaces are some-

times intentionally roughened to enhance heat trans-

fer. Extensive studies on heat transfer in regular

cavities filled with porous media have been done in the

past decades and various extensions of the problem have

been reported in the literature (see Baytas and Pop [8,9],

and Baytas et al. [10]). However, it is necessary to study

the heat transfer for more complex geometries because

the prediction of heat transfer for irregular surfaces is

a topic of great importance and irregular surfaces often

occur in many applications. Recently, several studies by

Rathish Kumar et al. [11,12], Murthy et al. [13] and

Kumar and Shalini [14] have been reported that were

concerned with the steady natural convection heat trans-

fer in wavy vertical porous enclosures. Attachment of

baffles fins or other suitable protrusion to the hot surface

of fluid saturated porous enclosure can affect consider-

ably the convection process in the system (see Riley

[15]). Recently, Mahmud et al. [16], and Das and Mah-

mud [17] have studied the steady free convection inside

vertical opposite-phase wavy enclosures and horizontal

inphase wavy cavity (Benard convection problem) filled

with a clean (Newtonian) fluid. Also, Mahmud and Fra-

ser [18] reported numerical results for flow and heat

transfer characteristics of a viscous and incompressible

fluid (clean fluid) inside a bent cavity made of two

straight-horizontal adiabatic walls and two bent-vertical

isothermal walls. Rate of heat transfer in terms of local

and average Nusselt numbers were calculated for differ-
ent Rayleigh numbers. The prediction of fluid flow and

heat transfer from irregular surface is also an important

topic of aerospace application. Kubota and Uchida [19]

analysed the characteristics of a transpiration cooling

system with use of porous media for hypersonic reentry

vehicles.

The aim of this paper is to examine the steady free

convection inside a bent cavity filled with a porous med-

ium made of two horizontal straight adiabatic walls

and two bent-vertical wavy walls, which are at constant

but different temperatures. The model considered is the

extension of Mahmud and Fraser [18] problem to the

porous medium case. However, to our best knowledge,

such an investigation for a porous cavity has not been

reported to date. The numerical results have been ob-

tained numerically by solving the governing evolution-

ary Darcy and energy equations using the Galerkin

Finite Element Method (FEM) described in the book

by Zienkiewicz and Taylor [20] for a range values of

the parameters like the aspect ratio (A), surface waviness

(k) and the modified Rayleigh number for the porous
medium (Ra). Results are presented in terms of local

and average Nusselt numbers, isotherms and streamlines

for different values of the governing parameters.
2. Governing equations

The geometry of this problem as schematically shown

in Fig. 1 is a porous cavity with two bent-vertical wavy

walls of height L, interval spacing W and amplitude of

the wavy bent wall a. It is assumed that initially the



Fig. 1. Cavity geometry, boundary conditions and the grid

structure.
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fluid-saturated porous medium is at the constant tem-

perature T0 and is isothermally heated and cooled by

the right and left walls at uniform temperatures Th
and Tc (<Th), while the horizontal walls are adiabatic.

We assume also that the flow is described by the Darcy

law and that the Boussinesq approximation is used to

characterize the buoyancy effect. The viscous drag and

inertia terms in the governing equations are neglected,

which are valid assumptions for low Darcy and particle

Reynolds numbers. With these descriptions and assump-

tions of the problem, the governing equations are

o�u
o�x

þ o�v
o�y

¼ 0 ð1Þ

o�u
o�y

� o�v
o�x

¼ � gKb
t

oT
o�x

ð2Þ

r
oT
o�t

þ �u
oT
o�x

þ �v
oT
o�y

¼ am
oT
o�x2

þ oT
o�y2

� �
ð3Þ

where �u and �v are the velocity components along �x - and
�y - axes, �t is the time, T is the fluid temperature and the

physical meaning of the other quantities are mentioned

in the Nomenclature. We introduce now the following

non-dimensional variables

x ¼ �x=L; y ¼ �y=L; t ¼ ðam=rL2Þ�t;
u ¼ ðL=amÞ�u; v ¼ ðL=amÞ�v
h ¼ ðT � T 0Þ=ðT h � T cÞ ð4Þ
where T0 = (Th + Tc)/2 is the characteristic temperature

of the fluid-saturated porous medium. Further, we intro-

duce the stream function, w, defined in the usual way as

u ¼ ow
oy

; v ¼ � ow
ox

ð5Þ

so that Eqs. (2) and (3) become

o
2w
oy2

þ o
2w
ox2

¼ �Ra
oh
ox

ð6Þ

oh
ot

þ ow
oy

oh
ox

� ow
ox

oh
oy

¼ o2h
ox2

þ o2h
oy2

ð7Þ

where Ra is the Rayleigh number which is defined as

Ra ¼ gKbðT h � T cÞL=amm ð8Þ

It is assumed that the wavy walls follow a profile of

cosine curve. Thus, the initial and boundary conditions

of these equations are

t 6 0 : w ¼ h ¼ 0

t > 0 : w ¼ 0; oh
on

¼ 0 on y ¼ 0; 0 6 x 6 1

w ¼ 0; oh
on

¼ 0 on y ¼ A; 0 6 x 6 1

w ¼ 0; h ¼ �1=2 on 0 6 y 6 A;

x ¼ k½1� cosð2py=AÞ�
w ¼ 0; h ¼ þ1=2 on 0 6 y 6 A;

x ¼ 1þ k½1� cosð2py=AÞ�

ð9Þ

where A = L/W is the aspect ratio and k = a/W is the

surface waviness of the wavy cavity.
3. Numerical formulation

Eqs. (6) and (7) subject to the initial and boundary

conditions (9) are solved numerically using Galerkin

Finite Element Method (FEM) described in the book

by Zienkiewicz and Taylor [20]. By using FEM, the

equations can be cast onto arbitrary domains without

any need for the conformal transformation of the

solution domain, see Fig. 1. Therefore, porous medium

flow problems inside complex geometries can easily be

solved. Following the method described in [20], the weak

formulation of these equations can be written on two-

dimensional domain, X, as
Z
X

o2w
ox2

þ o2w
oy2

� �
NdX ¼

Z
X

�Ra
oh
ox

� �
NdX ð10Þ

Z
X

Z
t

oh
ot

þ ow
oy

oh
ox

� ow
ox

oh
oy

� �
NdXdt

¼
Z

X

Z
t

o2h
ox2

þ o2h
oy2

� �
NdXdt ð11Þ



Table 1

Comparison of the average Nusselt number at different values

of Ra for A = 1 (square cavity) and k = 0 (plane vertical walls)

Authors Ra = 101 Ra = 102 Ra = 103

Walker and Homsy [22] 3.097 12.96

Bejan [23] 4.2 15.8

Beckerman et al. [24] 3.113

Gross et al. [25] 3.141 13.448

Manolo and Lage [26] 3.118 13.637

Moya et al. [27] 1.065 2.801

Baytas and Pop [28] 1.079 3.16 14.06

Present study 1.119 3.05 13.15
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where N is arbitrary weighting function. The spatial dis-

cretization of Eqs. (10) and (11) gives following matrix

equations for the first order explicit time marching:

Bw ¼ �RaEh ð12Þ

Mhnþ1 ¼Mhn � DtðBþDÞhn ð13Þ

where B is the element stiffness matrix, M is the lumped

mass matrix, D is the advection matrix. E is the matrix

for the derivatives of weighting functions. Here the super-

scripts ‘‘n ’’ and ‘‘n + 1 ’’ stand for the variable values at

time levels ‘‘t ’’ and ‘‘t + Dt ’’. These matrices are calcu-

lated on elements, which are four-node quadrilaterals

with bilinear shape functions, as:

Mij ¼
Z

X
NiNjdXe ð14Þ

Bn
ij ¼

Z
X

oNi

oxp

oNj

oxp
dXe ð15Þ

Dn
ij ¼

Z
X
Ni

oNj

oxp
NkunkdXe þ

Z
X
Ni

oNj

oxp
NkvnkdXe ð16Þ

Eai ¼
Z

X
Ni

oNi

oxa
dXe ð17Þ

here u and v are defined by Eq. (5). The Poisson

equation for stream function, w, is solved using Ele-
ment-by-Element Iteration technique with Conjugate

Gradient Method. This technique does not require

assembly of the element stiffness matrices to obtain glo-

bal stiffness matrix. Therefore it saves the storage of the

memory and execution time. The details of this method

can be found in Gulcat [21].

The physical quantities of interest are the local Nus-

selt number, Nu, which is calculated at the walls as

Nu ¼ oh
on

����
wall

ð18Þ

and the average Nusselt number, Nua, which is obtained

by integration of local Nusselt numbers over the walls as

Nua ¼
1

S

Z S

0

Nuds ð19Þ

Here S is the length of the wall where the Nusselt num-

ber is evaluated.

To check if the steady state solution is obtained or

not, the variation of stream function and temperature

distribution is observed between the consecutive time

steps according to following equation

X
unþ1

i;j � un
i;j

��� ���=X unþ1
i;j

��� ��� 6 e ð20Þ

where u stands for both temperature and stream func-

tion, e is the prescribed error, which is 10�5, at time level
n+1.
4. Results and discussions

Various computations were carried out for the fol-

lowing ranges: The Rayleigh number, Ra, from 10 to

103, the aspect ratio, A, 1–5 and surface waviness, k,
from 0 (plane walls) to 0.6. The results are given to carry

out a parametric study showing influences of several of

these non-dimensional parameters. The finite element

grid for the results presented in the following pages con-

tains 2400 elements and 2511 nodes, where there are 31

points along the width of the cavity and 81 points along

the height. Time step size is dictated by the stability cri-

teria, as given in Gulcat [21], which is taken as

Dt = 1 · 10�5. For the validation of the numerical meth-
od used in this study, a square cavity (A = 1) with plane

walls (k = 0) at the steady-state flow is solved. For this
problem, the values of Nua on the vertical walls are given

in Table 1; the grid considered being 45 · 45. It is seen
that the present values of Nua are in very good agree-

ment with those obtained by different authors, such as

Walker and Homsy [22], Bejan [23], Beckerman et al.

[24], Gross et al. [25], Manole and Lage [26], Moya

et al. [27], and Baytas and Pop [28]. Therefore, it can

be concluded that the developed code can be used with

great confidence to study the problem discussed in this

paper.

The typical temperature and flow fields are shown in

Figs. 2–9 (isotherms are on the top and streamlines on

the bottom). It is seen from these figures that as for cav-

ities filled with a porous medium with plane walls or cav-

ities with bent-vertical walls filled with a clear fluid (see,

Mahmud and Fraser [18]) hot fluid moves up along the

hot wall (right) and turns to the cold wall (left) at the top

adiabatic wall and then mixes with the stream of

downward-moving cold fluid along the cold wall. This

causes the circulation inside the cavity which is very

weak in strength at low Rayleigh number (=10). Isother-

mal lines nearly follow the geometry of the wavy surface

and it gives a clear indication of a conduction-dominant

flow and heat transfer. It is also seen that the results for

A = 1 and 2 with k = 0.5, shown in Figs. 2 and 3, indi-
cate the convection mainly occurs within the hot wall.



Fig. 2. Isotherms (top) and streamlines (bottom) for A = 1, k = 0.5, at Ra = 10, 100, 1000 (left to right).
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This is because the temperature difference between the

right wall and the porous medium is larger (positive)

than that between the left wall and the porous medium.

Further, Figs. 2–9 show that for all values of the param-

eters considered the flow is one egg cell, except for

Ra = 10, A = 4 and k = 0.6 in Fig. 7 where there exist
two egg shaped cells, one at the adiabatic top wall and

the other in the middle of the cavity dividing it into

two flow portions. This type of flow pattern is absent
Fig. 3. Isotherms (top) and streamlines (bottom) for A
in a cavity with vertical straight walls (k = 0) at low Ray-
leigh number. Further increase of the Rayleigh number

increases the strength of the circulation inside the cavity

as can be seen from Figs. 2–6 At Ra = 103, thermal

boundary layers are formed in the vicinity of the wavy

walls and the isothermal lines are highly concentrated

at these walls. The development of thermal boundary

layers greatly intensifies the isotherm as well as temper-

ature gradient in the vicinity of the wavy walls.
= 2, k = 0.5, at Ra = 10, 100, 1000 (left to right).



Fig. 4. Isotherms (top) and streamlines (bottom) for A = 3, k = 0.5, at Ra = 10, 100, 1000 (left to right).

Fig. 5. Isotherms (top) and streamlines (bottom) for A = 4, k = 0.5, at Ra = 10, 100, 1000 (left to right).
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Fig. 6. Isotherms (top) and streamlines (bottom) for A = 5,

k = 0.5, at Ra = 10, 100, 1000 (left to right).

Fig. 7. Isotherms (top) and streamlines (bottom) at Ra = 1
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Further, Table 2 shows the values of the average

Nusselt number Nua at the hot bent-wall (right wall)

of the cavity for different aspect ratios A and wave

amplitude k. One can see from this table that Nua
increases with the increase of Ra for all values of A

and k considered. However, the values of Nua increases

monotonically with the increase of both Ra and A for

small values of k(=0.4). For A = 4 and k = 0.3, the val-
ues of Nua are higher than those for other values of k
considered. This behaviour may be explained in connec-

tion with different flow regimes inside the porous cavity,

namely, conduction and critical regimes, respectively, as

termed by Mahmud and Fraser [18].

Finally, Figs. 10 and 11 illustrate the variation of the

local Nusselt number, Nu with the non-dimensional

coordinate y along the vertical hot and cold walls,

respectively, for some values of A and k when Ra =

1000. It is seen from Fig. 10 that for the hot wall, the val-

ues of Nu are higher for A = 5 (a large cavity ratio) than

for A < 5 (moderate cavity ratio) when k (=0.5) is fixed.
It is also seen, that for A > 3, Nusselt number remains

positive at any distance from the lower horizontal wall

(any value of y), i.e. heat is transferred in the negative

x direction. For cavities with A = 1, 2 and 3, on the

other hand, the situation becomes quite different. In this

case, Nusselt number may even become negative for the

both cold and hot walls of the cavity for some values of

y. This is due essentially to the geometry of the wavy
0 for A = 4 and k = 0, 0.3, 0.4, 0.5, 0.6 (left to right).



Fig. 8. Isotherms (top) and streamlines (bottom) at Ra = 100 for A = 4 and k = 0, 0.3, 0.4, 0.5, 0.6 (left to right).

Fig. 9. Isotherms (top) and streamlines (bottom) at Ra = 1000 for A = 4 and k = 0, 0.3, 0.4, 0.5, 0.6 (left to right).
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Table 2

Values of the average Nusselt number at the hot bent-wall for

different aspect ratios and wave amplitude

Nusselt number for hot wall

Ra = 101 Ra = 102 Ra = 103

A = 4 k = 0 1.077 2.215 7.339

k = 0.3 1.079 2.303 7.884

k = 0.4 1.072 2.236 7.768

k = 0.5 1.064 2.139 7.551

k = 0.6 1.055 2.024 7.264

k = 0.5 A = 1 0.893 1.368 5.803

A = 2 0.980 2.213 8.044

A = 3 1.041 2.260 8.038

A = 4 1.064 2.139 7.551

A = 5 1.073 1.993 7.015

Fig. 10. Variation of local Nusselt number along the hot

(above) and cold (below) walls at Ra = 1000 and = 0.5 for

different values of A.

Fig. 11. Variation of local Nusselt number along the hot

(above) and cold (below) walls at Ra = 1000 and A = 4 for

different values of k.
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wall. The measure of local heat transfer depends on the

slope of the wavy wall, and the local heat transfer is

managed by the fluid flow influenced by the buoyancy

force parallel to the wavy surface. For the lower portion

of the hot wavy surface, the velocity is larger and so is

the heat transfer rate. Convection-favouring buoyancy

forces are relatively larger along the lower portion of

the hot wavy surface then the upper portion of the hot

wavy wall. It means for the hot wall that the energy pro-

duced in the porous medium cannot be transferred out

from the right (hot) wall, while the right wall at higher

temperature will transfer heat towards the left wall at

lower temperatures. This principle can applies also for

the case of the cold wall as follows. The velocity and

the local heat transfer rate are larger on the upper por-
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tion of the cold wavy surface. The convection heat trans-

fer is dominant on this portion of the wavy wall. The

fluid flow is held on the lower half part of cold wavy sur-

face protruding out of the domain. For this reason, the

velocity and the local heat transfer rate are not larger on

the convex portion of the lower cold wall. However, at

A = 1 the value of Nusselt number is at its lowest nega-

tive value. Then it increases and remains constant and

positive. The constant values of Nusselt number also

take place for A > 1 and large values of y. The reason

for the extreme negative Nusselt number to occur at

A = 1 may be due to an intensive convection in the

square bent cavity.

Fig. 11 indicates that values of Nusselt number are

positive for both hot and cold walls when A = 4 and

all values of k considered. This can be explained due
to the fact that contribution of conduction becomes

more dominant at large aspect ratio values.
5. Conclusions

The steady natural convection inside a cavity made of

two horizontal straight walls and two vertical wavy walls

which follow a profile of cosine curve and filled with a

fluid-saturated porous medium has been numerically

examined in this paper. The governing equations were

solved using the Galerkin Finite Element Method

(FEM), which is one of the most commonly known

methods for such problems (Zienkiewicz and Taylor

[20]). The results are presented in terms of the isotherms

and stream functions and local and average Nusselt

numbers from the bent-vertical walls. The comparison

of the present results for a cavity with plane vertical

walls (k = 0) with those reported in the open literature
are very good. The study indicates that for large values

of the Rayleigh number, Ra (=1000), and moderate val-

ues of the aspect ratio A (smaller than 3) and of the sur-

face waviness, k (=0.5), the local Nusselt number from
the vertical walls may even become negative; this means

the heat generated in the porous medium cannot be

transferred through the porous medium from the right

(hot) wall to the left (cold) wall.
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